WSKE: Web Server Key Enabled
Cookies

Chris Masone
with
Kwang-Hyun Baek and Sean W. Smith
Department of Computer Science
Dartmouth College

& Outline

» Motivation
- WSKE
* Design
* Implementation
» Evaluation
» Related work
« Conclusions

é_ Motivation

» Web app designers want to improve

- Authentication usability
- Phishing resistance

- One strategy: secure cookies

- Disclosure resistant

- "Same origin policy"

- Set, released only over SSL/TLS

- Usually encrypted w/site specific secret

é Secure Cookie Issues

 Subject to replay attacks
» Cross-Site Scripting (XSS)

- can be prevented by proper site construction
- addressed in other work

* Pharming
- Attacker can spoof DNS

- |P attacks (BGP)

- Attackers can cause re-routing of IP traffic
- Yes, this is seen in the wild

é Secure Cookie Issues

 Subject to replay attacks
» Cross-Site Scripting (XSS)

- can be prevented by proper site construction
- addressed in other work

* Pharming
- Attacker can spoof DNS

- |P attacks (BGP)

- Attackers can cause re-routing of IP traffic
- Yes, this is seen in the wild

...Cookies are In use, we should protect them!

é Server-Side SSL

» SHOULD protect against DNS, IP spoofing

» A myriad of dialog boxes
- mismatched domain name
- unknown issuer for server certificate
- makes secure cookies less usable for authentication

» Users trained to click through

» If warning, then no cookies

- ~60% of SSL servers misconfigured
- Sites cannot choose to go self-signed
- |deal solution avoids "breaking the web"

é Properties of a Solution

* Leverage crypto

» Users shouldn't need to understand
» Limit impact on deployed sites

* Avoid server-side config changes

» Minimize user-side requirements

& WSKE

After cookies set via SSL, WSKE binds them
to server of origin and server's public key

* NO user interaction

» Web apps don't need to change

» Misconfigured SSL OK

» Covers a network-based attacker
» Key expiration potentially an issue

éVﬁE: Note...

» WSKE does not address registration

* Registration hard, addressed elsewhere

- WSKE simple, deployable now

- Users careful about SSL signals once, then protected
- Same trust model as SSH
- Combine with more complex registration method

& Prototype Design

 Man-in-the-middle at client

« When cookies are set:

- Remember hosthame

- Remember server's SSL key fingerprint
- Bind cookie to these values

- Just before cookie release:

- Verify hostname (browsers do this already)
- Check current SSL key against stored fingerprint
- Release cookies only if key matches

& Prototype Implementation

* Firefox extension

Https Requests

E3r
: ‘%% Https Responses

| |
C—1

Internet

Local Hosthame/

Fingerprint Store
__‘

 JavaScript cookie access left for future work

& Prototype Implementation

Browser Server

Http request
ready

SSL handshake initiation

esponse, with server certificate

SSL setup continues

SSL session established

ldeal window for checking
server key

>

Request sent (with cookies)

é Prototype Implementation

Browser Server

Http request
constructed
|http—on—modify—request | au el
Http request
complete
SSL handshake initiation

| BadCertHandler | Besponse, with server cert

L set ntin

SSL session established

No hooks here

-1

dequest sent (with cookiesl

<

'http-on-examine-response p—— Response returns

& Prototype Implementation

Broyvser WSKE Server

‘ Http request constructed \

http-on-modify-request
No cookies. Request
returned unmodified.

| HttE request readx |

o SSL Negotiation —

Request sent

g

>

<

Response returns (with cookies)

>

http-on-examine-response

If cookies, then store
hosthname and key hash

“Return response unmodified |

& Prototype Implementation

Browser WSKE Server

‘ Http request constructed \

http-on-modi fy—requesjc>

‘ Dummy request constructed \

SL negotiation

|Cookie-less dummy req,
<

Response (ignored)

‘ Server key check \
Request returned. No

cookies if key mismatch ‘

\ Http request ready \

o SSL negotiation '_./-

Request sent o

-

<

Response returns

é Evaluation

« Attack resistance

- Testbed: 2 webservers, BIND, and a client
- Cookies blocked in simulated DNS attack
- Cookies blocked in simulated IP-spoof attack

* Deployability

- Web Apps need not know about WSKE
- Load-balancing, new server keys could be problem
- Possibly bind to CA key instead of server key

» Usabillity
- Users only need to look at SSL cues once

- If spoofing, credentials cannot be released
- Is there a re-reqistration attack?

é Related Work

« Locked Cookies

- Contacted by authors after WSKE accepted to USEC
- Same concept, implementation modifies binary
- Published as a tech report

« Active Cookies

- Requires server-side changes, no client-side code
- Binds cookies to numeric IP addresses
- Vulnerable to IP-based attacks

* Phone-based schemes

- Phoolproof, Mannan & van Oorschot
- Require an external device, server and client changes
- Perhaps overkill for some sites

é Conclusions

- WSKE could be deployed today

» Server-side SSL made more usable

» Cookie-based auth made more secure
* Prototype works, but could be cleaner

* More rigorous usability evaluation?

& Thanks!

Questions?

