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Motivation

• Web app designers want to improve

• One strategy: secure cookies

! Authentication usability

! Phishing resistance

! Disclosure resistant

! "Same origin policy"

! Set, released only over SSL/TLS

! Usually encrypted w/site specific secret



Secure Cookie Issues

• Subject to replay attacks

• Cross-Site Scripting (XSS)

• Pharming

• IP attacks (BGP)

! Attacker can spoof DNS

! can be prevented by proper site construction

! addressed in other work

! Attackers can cause re-routing of IP traffic

! Yes, this is seen in the wild
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Server-Side SSL

• SHOULD protect against DNS, IP spoofing

• A myriad of dialog boxes

• Users trained to click through

• If warning, then no cookies

! mismatched domain name

! unknown issuer for server certificate

! makes secure cookies less usable for authentication

! ~60% of SSL servers misconfigured

! Sites cannot choose to go self-signed

! Ideal solution avoids "breaking the web"



Properties of a Solution

• Leverage crypto

• Users shouldn't need to understand

• Limit impact on deployed sites

• Avoid server-side config changes

• Minimize user-side requirements



WSKE

• No user interaction

• Web apps don't need to change

• Misconfigured SSL OK

• Covers a network-based attacker

• Key expiration potentially an issue

After cookies set via SSL, WSKE binds them

to server of origin and server's public key



WSKE: Note...

• WSKE does not address registration

• Registration hard, addressed elsewhere

• WSKE simple, deployable now

! Users careful about SSL signals once, then protected

! Same trust model as SSH

! Combine with more complex registration method



Prototype Design

• Man-in-the-middle at client

• When cookies are set:

• Just before cookie release:

! Remember hostname

! Remember server's SSL key fingerprint

! Bind cookie to these values

! Verify hostname (browsers do this already)

! Check current SSL key against stored fingerprint

! Release cookies only if key matches



Prototype Implementation

• Firefox extension

Local Hostname/

Fingerprint Store

Https Responses

Https Requests
Https Requests

Https Responses

Internet

• JavaScript cookie access left for future work
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Prototype Implementation
Browser Server

Http request constructed

Request sent

Response returns (with cookies)
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SSL Negotiation

Http request ready
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Prototype Implementation
Browser Server

Http request constructed

Request sent

Response returns
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Evaluation

• Attack resistance

• Deployability

• Usability

! Web Apps need not know about WSKE

! Load-balancing, new server keys could be problem

! Possibly bind to CA key instead of server key

! Testbed: 2 webservers, BIND, and a client

! Cookies blocked in simulated DNS attack

! Cookies blocked in simulated IP-spoof attack

! Users only need to look at SSL cues once

! If spoofing, credentials cannot be released

! Is there a re-registration attack?



Related Work

• Locked Cookies

• Active Cookies

• Phone-based schemes

! Requires server-side changes, no client-side code

! Binds cookies to numeric IP addresses

! Vulnerable to IP-based attacks

! Contacted by authors after WSKE accepted to USEC

! Same concept, implementation modifies binary

! Published as a tech report

! Phoolproof, Mannan & van Oorschot

! Require an external device, server and client changes

! Perhaps overkill for some sites



Conclusions

• WSKE could be deployed today

• Server-side SSL made more usable

• Cookie-based auth made more secure

• Prototype works, but could be cleaner

• More rigorous usability evaluation?



Thanks!

Questions?


