
WSKE: Web Server Key Enabled
Cookies

Chris Masone

with

Kwang-Hyun Baek and Sean W. Smith

Department of Computer Science

Dartmouth College

Outline

• Motivation

• WSKE

• Design

• Implementation

• Evaluation

• Related work

• Conclusions

Motivation

• Web app designers want to improve

• One strategy: secure cookies

! Authentication usability

! Phishing resistance

! Disclosure resistant

! "Same origin policy"

! Set, released only over SSL/TLS

! Usually encrypted w/site specific secret

Secure Cookie Issues

• Subject to replay attacks

• Cross-Site Scripting (XSS)

• Pharming

• IP attacks (BGP)

! Attacker can spoof DNS

! can be prevented by proper site construction

! addressed in other work

! Attackers can cause re-routing of IP traffic

! Yes, this is seen in the wild

Secure Cookie Issues

• Subject to replay attacks

• Cross-Site Scripting (XSS)

• Pharming

• IP attacks (BGP)

! Attacker can spoof DNS

! can be prevented by proper site construction

! addressed in other work

! Attackers can cause re-routing of IP traffic

! Yes, this is seen in the wild

...Cookies are in use, we should protect them!

Server-Side SSL

• SHOULD protect against DNS, IP spoofing

• A myriad of dialog boxes

• Users trained to click through

• If warning, then no cookies

! mismatched domain name

! unknown issuer for server certificate

! makes secure cookies less usable for authentication

! ~60% of SSL servers misconfigured

! Sites cannot choose to go self-signed

! Ideal solution avoids "breaking the web"

Properties of a Solution

• Leverage crypto

• Users shouldn't need to understand

• Limit impact on deployed sites

• Avoid server-side config changes

• Minimize user-side requirements

WSKE

• No user interaction

• Web apps don't need to change

• Misconfigured SSL OK

• Covers a network-based attacker

• Key expiration potentially an issue

After cookies set via SSL, WSKE binds them

to server of origin and server's public key

WSKE: Note...

• WSKE does not address registration

• Registration hard, addressed elsewhere

• WSKE simple, deployable now

! Users careful about SSL signals once, then protected

! Same trust model as SSH

! Combine with more complex registration method

Prototype Design

• Man-in-the-middle at client

• When cookies are set:

• Just before cookie release:

! Remember hostname

! Remember server's SSL key fingerprint

! Bind cookie to these values

! Verify hostname (browsers do this already)

! Check current SSL key against stored fingerprint

! Release cookies only if key matches

Prototype Implementation

• Firefox extension

Local Hostname/

Fingerprint Store

Https Responses

Https Requests
Https Requests

Https Responses

Internet

• JavaScript cookie access left for future work

Prototype Implementation
Browser Server

Http request

ready

SSL handshake initiation

Response, with server certificate

.
.
.

Request sent (with cookies)

Id
e

a
l
w

in
d

o
w

 f
o

r
c
h
e
c
k
in

g

s
e
rv

e
r

k
e
y

SSL session established

SSL setup continues

Prototype Implementation
Browser Server

Http request

constructed

SSL handshake initiation

Response, with server cert

.
.
.

Request sent (with cookies)N
o
 h

o
o
k
s
 h

e
re

SSL session established

SSL setup continues

Response returns

http-on-modify-request

BadCertHandler

http-on-examine-response

Http request

complete

Prototype Implementation
Browser Server

Http request constructed

Request sent

Response returns (with cookies)

WSKE

SSL Negotiation

Http request ready

If cookies, then store

hostname and key hash

http-on-modify-request

No cookies. Request

returned unmodified.

http-on-examine-response

Return response unmodified

Prototype Implementation
Browser Server

Http request constructed

Request sent

Response returns

http-on-modify-request

WSKE

Cookie-less dummy req.

Dummy request constructed

SSL negotiation

Response (ignored)

Server key check

Request returned. No

cookies if key mismatch

SSL negotiation

Http request ready

Evaluation

• Attack resistance

• Deployability

• Usability

! Web Apps need not know about WSKE

! Load-balancing, new server keys could be problem

! Possibly bind to CA key instead of server key

! Testbed: 2 webservers, BIND, and a client

! Cookies blocked in simulated DNS attack

! Cookies blocked in simulated IP-spoof attack

! Users only need to look at SSL cues once

! If spoofing, credentials cannot be released

! Is there a re-registration attack?

Related Work

• Locked Cookies

• Active Cookies

• Phone-based schemes

! Requires server-side changes, no client-side code

! Binds cookies to numeric IP addresses

! Vulnerable to IP-based attacks

! Contacted by authors after WSKE accepted to USEC

! Same concept, implementation modifies binary

! Published as a tech report

! Phoolproof, Mannan & van Oorschot

! Require an external device, server and client changes

! Perhaps overkill for some sites

Conclusions

• WSKE could be deployed today

• Server-side SSL made more usable

• Cookie-based auth made more secure

• Prototype works, but could be cleaner

• More rigorous usability evaluation?

Thanks!

Questions?

